HTML AESTRACT * LINKEES

PHYSICS OF PLASMAS VOLUME 11, NUMBER 2 FEBRUARY 2004

Destruction of invariant surfaces and magnetic coordinates
for perturbed magnetic fields

S. R. Hudson
Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543

(Received 5 September 2003; accepted 17 November)2003

Straight-field-line coordinates are constructed for nearly integrable magnetic fields. The coordinates
are based on the robust, noble-irrational rotational-transform surfaces, whose existence is
determined by an application of Greene’s residue criterion. A simple method to locate these surfaces
is described. Sequences of surfaces with rotational-transform converging to low order rationals
maximize the region of straight-field-line coordinates.2004 American Institute of Physics.
[DOI: 10.1063/1.1640379

I. INTRODUCTION into invariant Cantor setg¢cantor) for strong perturbation
and the region occupied by chaotic field lines will increase.

As toroidal magnetic field line flow, with non-vanishing cqnsidering that both the rational and irrationals are dense in
toroidal component, is a Hamiltonian systéfall the pow- the set of real numbef&! the structure of the magnetic

erful anq insightful tools valid for Hamiltonian .systgms MaY fie|d, at every level of detail, is a complex mixture of peri-
be appliedsee Refs. 3 and 4 for comprehensive discussiongic orpits, island chains, and chaotic trajectories inter-
pf dynamical _sy_sterr)sA partlcularly_ useful property_ is that, spersed with invariant surfaces and cantori.

if the system is integrable, then action-angle c_oordmates MaY | the plasma physics community there are several com-
be constructed everywhefelhe analog of action-angle co- putational codes that consider the challenging problem of

ordinates for magnetic field line flow is straight-field-line describing plasma behavior in perturbed and chaotic mag-
coordinates. Such coordinates greatly simplify the dynamicsatic fields2-15 While it is not necessary to use straight-

Along a field line in an integrable system, the "action” Co- fie|q.|ine coordinates, it is helpful to be aware of the type of
ordinate,y (toroidal flux), is constant and the “angle” coor- pepayior that chaotic magnetic fields exhibit.
dinate,a (poloidal anglg, increases linearly with the “time This article will present a construction of straight-field-

coordinate{ (toroidal angle, asa({)=ao+ + ()¢, where  jine coordinates for nearly integrable fields containing mag-
+ Is the rotational-transform. As plasma dynamics is strongly,eic isiands, chaotic field lines, and invariant flux surfaces.
influenced by the confining magnetic field, it is not surpris-tpg coordinates are based on a selection of flux surfaces with
ing that straight-field-line coordinates are widely used inpopie jrrational rotational-transform. These surfaces are
plasma physics, with the most common choice being Boozefye|y to be most robust to chaos. A sensitive technique is
coord|ne}te§. i ) . employed(Greene's residue criterigprio determine if a cho-
Straight-field-line coordinates can only be constructedsgy gyrface persists or has been destroyed by perturbation.

on flux surfaces. For integrable fields, all the magnetic fieldr,o construction of each surface employs a method that ex-

lines lie on flux surfaces. For a non-integrable field the situyicity |ocates a surface with desired rotational-transform,
ation is more complicated. A non-integrable field may be

] k : ) without numerically calculating the rotational-transform by
considered as an integrable field plus a non-integrable pef;qiq jine following.

turbation and is the realistic case for plasma confinement
devices. Magnetic islands form at the rational rotational-
transform surfaces and chaotic trajectories emerge near un- LAY
stable periodic orbits. In such regions, straight-field-line co- ¥~ lim AL @
. A{_»oc
ordinates cannot be constructed. Nonetheless, the usefulness
of straight-field-line coordinates is not completely lost. De-where @ is an arbitrary poloidal angle coordinate. This limit
pending on the magnitude of the perturbation, theexists if, for any given positive, there exists a\ (s such
Kolmogorov—Arnold—MosefKAM ) theorend~® shows that that for allA{>A¢s, |AO/AL—+|< 6. For a chaotic trajec-
flux surfaces with sufficiently irrational rotational-transform tory, it is not clear that this limit exists. A given chaotic field
survive perturbation. These flux surfaces are commonlyine may spend an arbitrarily long time in a certain region of
called KAM surfaces. If the integrability destroying pertur- space with a certain average transform, then squeeze through
bation is small, then flux surfaces will exist almost every-a partial barriencantor into a different region with a dif-
where. ferent average transform. An appeal to the ergodic theorem,
The construction of straight-field-line coordinates be-where the “time” average is equal to the accessible phase
comes increasingly treacherous as the perturbation strengfipace average, may provide some relief, but for practical
increases. The existence of a given flux surface is fragilepurposes in which a field line cannot be followed an “infi-
The irrational rotational-transform surfaces will disintegratenite” distance(about 18° transits in Ref. 1§ and consider-

The rotational-transform- is defined as the limit
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ing the complex structure of chaotic fields, any practical dg . BY

measurement of the rotational-transform will be unreliable in 7= 0(p.0.9)= 53 ()
chaotic regions. Furthermore, in chaotic regions, nearby tra-

jectories will diverge exponentially at a rate characterized byfrom a given starting point. The magnetic field line flow

the Lyapunov exponeritlt is likely that any finite approxi- produces a mapping

mation to the rotational-transform limit will be a non- ~
monotonic function of position in the chaotic region. In regu- (f)ZT(p ’ (6)
lar regions of space occupied predominately with flux 0 Y

surfaces, the situation is different. On KAM surfaces, thevvhere the mapping integrates the field lines over one tor-

limit will converge to arbitrary accuracy if the field line is ;44 period from a given starting point, typically chosen on
followed a sufficient distance and efficient methods for cal-a symmetry plane.

culating the transform exif=*° Finally, for periodic field Periodic orbits serve as a useful framework for under-

lines, which close after a finite number of transits, thegianging chaotic fields and are defined as orbits that satisfy
rotational-transform can be determined exactly after follow-

ing the field line a finite distance. p(¢+2mq/N)=p(¢), (7)
The outline of this article is as follows. Section Il will
describe the theoretical and numerical tools that will be ap- 0($+2maIN)=0()+2mp, ©®)
plied. In particular, the representation of magnetic field linefor integers p,q) and whereN is the toroidal periodicity of
flow as a mapping, the tangent mapping, stellarator symmehe device.
try, and the continued fraction representation will be briefly  The search for symmetric periodic orbits is greatly sim-
described. Also, Greene’s criterion for determining the exisyplified for stellarator symmetric fields. By writing the map-
tence of a given irrational surface is described. Section lllbing T as a product of involutiongwhich is possible for
will present a selection of an “optimal” set of surfaces by stellarator symmetric fields; see Refs. 21, 3, and 22 for de-

choosing the rotational-transform. In Sec. 1V, the existenceails), it is only required to search for orbits that satisfy
of each selected surface is determined using Greene’s crite-

rion, and in Sec. V an explicit construction of an invariant ~ 0(¢+7a/N)=06(¢)+ 7p (C)

surface is presented. Havirtg selected(ii) determined the o the g=0 line. Such symmetric periodic orbits are located

existence of, andiii) constructed a suitable set of invariant \;i5 3 one-dimensional searchote that derivative informa-

surfaces, magnetic coordinates are then obtained in Sec. Mifop, is available from the tangent map described bgldis

By selecting the most-irrational surfaces, the magnetic coOfpa)yes the computational effort and affords greater numerical

dinates thus constructed are likely to be those most robust thcuracy.

chaos. Finally, some comments are given in Sec. VII. The behavior of orbits near a given orbit is described by
the tangent map

op op
Il. PRELIMINARIES ~|=
50) ( 50/ (10)
Straight-field-line coordinates are determined by the hereM is defined
magnetic field. This article will consider the magnetic field to Whereh 1S define
be given numerically in the form dp, 4P
=| =~ ~ 1, 11
B=B/(p.0,0)¢,+ B(p.0,8)e,+ B(p, 0,48y, () (ape, 370 (0
where(p, 6, ¢) form a toroidal coordinate systers,=d,X,  and is determined by field line integration
€y=dyX, ande,= d X, wherex is the position vector anB?¢ _ _
is nowhere zero in the region of interest. This article will dM [ dpps dop
consider fields that are consistent with stellarator g4 = | 5 5 3,0 (12)
p 1

symmetry?® The magnetic field and coordinates are stellar-
ator symmetric if The full-period tangent mappiniyl® at a periodic orbit de-
B(0.0.d)= —B(p — 0 — termines the stability of the orbitlf the eigenvalues of19
(p.0.4) (p.= 0.~ ), are complex conjugates, the tangent orbits will display ellip-

B p,0,¢)=B%p,— 0,— &), (3)  tical motion under the mapping near the periodic orbit and
that periodic orbit is considered stable. If the eigenvalues are
BY(p,0,$)=B(p,— 6,— ). real reciprocals, the tangent motion will either exponentially
It follows that if {p(¢), 6(¢)} is a field line then so also 9roW or decay and the periodic orbit is unstable.
is {p(— &), — 6(— $)}. Stellarator symmetry is equivalent to Greené suggested that the existence of a given irratio-
time-reversal symmetry in dynamical systems. nal KAM surface is related to the stability of neighboring

A field line is determined by numerically integrating periodic orbits—in particular the periodic orbits that “best
approximate” the irrational. The term “best approximate” is

made clear using the continued fraction representation of the
real numbers. Any real number may be expressed as

B

dp .
ﬁ:p(p,e,d)):@, (4)
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1 then the irrational surface is on the edge of destruction. By
+=ap+ 1 =[ag,a1,82,83,...]1, (13 criticality it is meant that the KAM surface is on the verge of
a,+ 1 destruction. The behavior dR at criticality is interesting
topic: for example, for the standard non-twist nidghe resi-
agt:-- due converges to a 6-cycte.Such matters are beyond the

where the integers,, are called the partial quotients. The SCOP€ of the present application and it is sufficient to deter-

continued fraction representation is described in detail bynine if the residues are large or small compared to 0.25.
Niven Some salient points are reproduced here for com- Considering the residue to be a function of the continued

pleteness: every irrational has a unique representation as &fction representation, at fixed perturbation, Greene noted

infinite continued fraction; the sequence will terminatexif that

is rational and will continue infinitely if+ is irrational; the

rational ppy/0m=[a0.21,a2, . . . ay] is called themth con- R(lag, ... a+1,... anD>R([ag, ... .ai,....an]),
vergent; the convergents form a sequence of consecutively (17

better approximates that are the “best” in the sense that if h _ | K ionals with I
|+—alb|<|+—py/q,| where a,b are integers, therb wherea; = max(a;). Loosely speaking, rationals with smaller

~n; and successive convergents bound the_inaionaf 11 uteniseseribed in tis aice are morenobe
Pm/Um<+<Pm+1/dm+1 (OF Pmi1/Ums1<+<Pm/dm de- '

pending onm). A real number is determined by the contin- _robust to chaos. Also, Greene noted tRat: asa;—x,
ued fraction representation by=«ay where g is defined

a,+

implying that there is a band of chaos associated with every

inductively by the partial quotients rational.
y by P g That the noble irrationals are most robust to perturbation
B 1 may be understood by noting that they are farthest from low-
an=an+ Apsar (14) order rationals and thus least likely to be destroyed by island

. . . o overlap—a mechanism for chaos suggested by Chirkov.
‘The magnitude of the partial quotierdg, indicates how Greene’s residue criterion gives a very sensitive and
rapidly thepp, /g, converge tos. Irrationals with continued  jear criterion for determining the existence of an irrational
fraction representations terminating in infinitely many 1's, rface. Furthermore, it guides selection of the most suitable
[&, ... .am,1,1,1,.. ], are most difficult to approximate g,rfaces to be used as a coordinate framework in Sec. IlI.
with rationals, in the sense that higher order rationals argne residue has been applied in the context of magnetic field
required to achieve a given accuracy, and give meaning tgne flow by Hanson and Cad}:?’
the expression “most-irrational.” Such irrationals are com- Not only does the residue criterion enable the existence
monly called noble irration.als. The mos_t noble irratior_1a| iSof a given irrational surface to be determined, it can also be
[1,1,1,1,3...], and by settinga,=any in Eq. (14), this s to predict whethemyinvariant irrational surface exists
value is determined/=(1+ \/5)/2. Interestingly, this num- 5 3 given interval. In this context the residue criterion may
ber, called the golden mean, is the limiting ratio of the Fi-pe ysed to identify and locate the invariant surface which
bonacci series. There is a close relationship between the cofafines the boundary of a chaotic regirSuch a surface
tinued fraction representation and the Farey ffedhe  may be called the boundary surface. Consider the interval
continued fraction representation for a rational is unique W'”Tpo/%,pl/%], where the rationalspy/qy, pi/q; are
the following exception neighboring,p,10o— Pod:=* 1, and the medianp/q=(p,
pla=[2a0,a1, ... am]=[a0,a1, . .. an—1,1]. (15) +_p1)/(qo_+ g,). By a criterion of Ref. 28, invariant surfaces
with rotational-transform i pg/dq,p1/9:] (are / are not
The iQea qf Qreene’s method is that a given irrationallikely to exist if the average feSidU‘R(po,qo)‘*‘ R(pl'ql))/z is
surface will exist if the sequence of convergents are stablésignificantly (smaller/largerthan 0.25. By recursively subdi-
Greene present_ed this .method as a conjecture. It hgs NONGing the interval using the mediant, and testing tlusver/
theless yielded impressive results and MacKay has discussgghye) subinterval for the existence of invariant surfaces, an
the reliability of the gssumptlpr?é. Greene considered a giqorithm is devised that will ultimately lead to the invariant
quantity called the residu&, which characterizes the stabil- grtace with thelowest/highestrotational-transform in the
ity of a periodic orbit. Itis defined by the tangent map evalu-qiginal interval. At each subdivision, the interval length is
ated along the full periodic orbit by reduced. Furthermore, as the rationpl§/qy, p;/g; are
2—Tr(M9) neighboring, the successive rationals have a natural connec-
=T (16) tion to the convergents of nearby irrationals. This allows the
continued fraction representation of the boundary surface to
For the purposes of this article is it sufficient to note thebe deduced® Alternatively, the algorithm is terminated at
following. For a given periodic orbit, the residue is a func- some point(perhaps when the periodic orbits become too
tion of the perturbation. If the residues of the convergents ofong and numerical accuracy becomes paord the locally
a given irrational approach zero, then that irrational surfacenost robust irrational surfate is given by @,
will exist. If, however, the residues become large, then that- yp,.()/(q,+ vdn+1). This method for constructing the
irrational surface has been destroyed. The critical value iboundary surface will be used in Sec. VI.
R=0.25: if the residues of the convergents approach 0.25 The model magnetic field used for this study is given as
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B=VpXVO+VdpXVx(p,0,d), (18 +=[ag,....am,N,Ng,Ny, ... ,NN1,1,.. ],
where the field line Hamiltoniayy is given +=[ag,...,an—1,10,n1,N5,....Ny,1,1,...]. (23
1 1 This is equivalent to appending an infinite sequence of 1's to
_ 2 _ _ _ —
x=p2+k 2 CoS 26— )+ 3 cog30-24)|. (19 the continued fraction representation of a rational. For fixed
. . . . {n1,n,, ... Ny}, each such sequence will converge to the
The equations governing the field line are then rational p/q=[ag.a;, . ..,a,] asn increases. Using such
p=—K[sinN(260— ¢)+sin(36—2¢)], (20 sequences, an arbitrarily dense set of noble irrationals that
) converge to a given rational can be constructed.
0=p. (21 Without a priori knowledge of the perturbation spec-

This field is integrable, andp, 6, ¢) are action-angle coor- trum, it cannot be pre-determined exactly which irrational
the rotational-transform profile is-=p. For non-zerok, that a given selection of irrational surfaces is the most robust
“primary” islands will form at thep,/q,=1/2, p,/q,=2/3 10 perturbation, but the sequences as defined caxpected
surfaces. A is increased, “secondary” islands will form at {0 be the most robust as they are based on the most noble
all rationals on the Farey tree formed py/q; and p,/q, irrational KAM surfaces. This selection adaptively expands
regions will develop and invariant surfaces will be destroyedpPartition regions of chaos.

A generally perturbed field will have a perturbation spec-
trum that is initially unknown. The model field presented |v. SURFACE EXISTENCE
here has sufficient complexity to represent a generally per- , ) .
turbed chaotic field relevant for fusion confinement devices, It i not necessary to pre-determine the existence of a

with the exception of reversed shear systems for which Selected surface. One may proceed to directly construct the
model non-twist ma¥ is required. surface and then determirgeposterioriif that surface was

The remainder of this article will use these idd@sto successfully constructed. However, the efficiency and reli-
select,(ii) to determine the existence of, afiil) to construct ability of Greene’s method for determining the existence of

an appropriate set of irrational surfaces. On these surface@! irrational flux surface justifies the additional computa-
magnetic coordinates will be constructed. tional cost. In fact, as any numerical method for constructing

an invariant surface will fail if that invariant surface does not
exist, pre-determining the existence of a required surface
Ill. SURFACE SELECTION may save computational effort.

The selection of surfaces is somewhat arbitrary and ma To illustrate the application of Greene’s residue criterion,
. . - y the critical perturbation is determined for the surface with
be adapted to suit the particular application. In the construc- |~ ° . -
. ) ) . . .. rotational-transform equal to the inverse golden mear
tion of magnetic coordinates to be described in Sec. VI, it |s_[0 11,1,..]. The convergents of~ are 1/2, 2/3, 3/5
assumed that the chaotic field lines are associated with afe_/8 ’8/’13' 13/21 21/34 34/35 55/89. 89/144 1’44/2'33 é33/
low-order islands. We thus seek a selection of surfaces tha)g/7 i ’ ’ X ' ' ' '

. . : . . . . 7, 377/610. ... Thebehavior of the residue of the conver-
will maximize the region of straight-field-line coordinates— )
gents for three perturbation values—below, near, and above

that is, lie as close as possible to the chaotic regions of the~ .~ . . R
. L criticality—is shown in Fig. 1.
low-order islands—and that the selection is based on thée - : .
For less-than-critical perturbation, the residues approach

most robust irrational surfaces. . . .
zero. For near-critical perturbation, the residues approach

The non-uniqueness of the continued fraction represen: L ) :
. 1nique : : P n0.25; and for larger-than-critical perturbation, the residues
tation of a rational is convenient for constructing sequencels:)ecome large. For these three cases, detailed Poipiats

of noble irrationals that converge from above and below amf:igs 2, 3, and 4 confirm that the residue criterion predicts

gg’;g irr?;l[?onnilglq_[ao’al’ +--8m]. The sequences of . o breakup of the surface. In each of the Poihm, the
location of the(89,144 periodic orbit is shown with\, the

+=[ag,aq,...,4m,N1,1,1,.. ], (144,233 with [, the (233,377 with X, and the(377,610 is

(220  shown with +. If the invariant surface exists, it will be lo-

cated between successive convergents and thus lie between

will converge from above or below, depending on whetier the X's and the+’s. In Fig. 4, above criticality, this region

is odd or even, t@/q asn increases. The “nobility” of the has become chaotic.

irrationals in these sequences decreases iasreases. As To illustrate that the more-noble irrationals are more ro-

increases, the location of the irrational surfaces will approaclbust to chaos, the critical perturbation for each of the irratio-

the chaotic region near thg/q unstable orbit and at some nals comprising the sequences given in Table | is determined.

point will be engulfed by the associated chaos. For all these sequences, asincreases the irrationals con-
These two sequences alone may not provide sufficienterge, either from above or below, to the limit rational. i\s

spatial resolution, but arbitrarily many such sequences, dencreases the “nobility” of the irrational decreases and it is

fined by a fixed set of integertny,n,, ... ,ny}, may be expected that the larger irrationals will be destroyed at

constructed lower perturbation. These expectations are consistent with

+=[ag,as,....an—1,1n,1,1,...],
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p/q
FIG. 1. Residue below k=0.001570L..., solid line, near k

=0.0015801.., dotted ling, and above K=0.001590QL ..., dashed

L . 1 . .
line) criticality for the y~* convergents. FIG. 3. Poincareplot showing they - surface, and the periodic orbits

corresponding to its convergents, near criticaliky=(0.0015801...). The
horizontal (angle scale is[3.117, 3.166 and the verticalradial) scale is
. . . " . [0.63165, 0.63185

the numerical determination of the critical perturbation pa-
rameterk for each irrational, as shown in Fig. 5. This fractal

“critical-function” has been studied by several authors for

the standard mafsee, for example, Ref. 31For each irra-

+=[0,1,1,1n,j,1,1,1,.. ],

tional, the residue of the first 13 convergents is calculated inwherej is an arbitrary, fixed positive integer. These irratio-

the application of Greene’s criterion.

nals converge to 1/2 and 2/3 asncreases. Sequences with

To further illustrate the behavior, the critical perturbationj>1 may be considered less-noble than the sequence with

parameter for the following irrationals is determined:

+=[0,1,1n,j,1,1,1,1,.. ],
(24

j=1, and indeed the less-noble irrationals are destroyed at
lower perturbation as shown in Fig. 6. For this figure, the

FIG. 2. Poincareplot showing they™! surface, and the periodic orbits

corresponding to its convergents, below criticality=0.0015701..).
The horizontallangle scale is[3.117, 3.166 and the verticalradial) scale
is [0.63165, 0.6318p

FIG. 4. Poincareplot showing they™! “surface,” and the periodic orbits
corresponding to its convergents, after destructiksr ©@.0015901 . .):
horizontal (angle range=[3.117,3.168, vertical (radia) range
=[0.63165,0.6318b
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TABLE . Irrational sequences: the irrationals given by the continued frac- 2.5 T T T 1T 1
tion representation converge to the limiting rational, from above or below, as
n—oo,
Limit Continued fraction 20F N + + —
1. (1/2)* [0,1,1n,1,1,1,1,1,..1] o
2. (5/9) [0,1,1,4n,1,1,1,1,.. ] w -
3. (5/9)* [01,1,319,1,1,1,.. ] e - x *
4, (417) [0,1,1,30,1,1,1,1, . . ] 1o m x 7
5. 4y [0,1,1,2,1n,1,1,1,. . ] *- <t
6. (7/12) [0,1,1,21,19,1,1,. . ] * - T
7. (7112)" [01,122,1,11,.. ] e -
8. (3/5) [0,1,1,2n,1,1,1,1,. . ] 1.0 & T ox .
9. (3/5)* [01,1,1,19,1,1,1,.. ] £ T
10. (8/13) [0,1,1,1,1,7,1,1,.. ] b *
11. (8/13) [0,1,1,1,1,1,1,1,...] o
12. (5/8) [0,1,1,1,1,19,1,1,. . .] 0.5 %
13. (5/8)" [0,1,1,1,20,1,1,1,.. ] %
14. (7/11y [0,1,1,1,2,19,1,1,. . .] L
15. (7/11) [0,1,1,1,32,1,1,1, .. ]
16. (2137 [0,4,1,1n,1,1,1,1, .. ] 0.0 ! L ! L1
1 5 4 7 3 8 5 7 2
2 9 7 12 5 13 8 11 3

critical perturbation parameters for irrational sequences OfiG. 6. Critical perturbation paramete, for destruction of invariant sur-
the type given in Eq(24) with j=1,5,10 are compared. Note faces, with irrational rotational-transform given in Eg4), plotted against
that the less-noble irrationals, that is those with5,10, are the rotational-transform. Irrationals defined by the sequence pith are
interspersed among the most-noble irrationals; thus, at cei—zgl"g”iswfg;’ for J=5 with * >, and for j =10 with * =" The vertical
tain perturbation parameters, between two irrational surfaces

that are invariant, there are irrational surfaces that have been

destroyed. This highlights the perils of interpolating straight-

field-line coordinates between invariant surfaces. transform will now be described. This construction is similar
to the method proposed by Dewar and Méfsén that a
V. SURFACE CONSTRUCTION curve of prescribed transform is defined by minimizing the

difference between the curve and its own image under the
Given that the preferred surfaces have been identifiedyap. |n this case, a Newton method is used to find the curve
and that their existence may be determined, a method tgat exactly coincides with its image, which is thus an invari-
construct a surface of prescribed irrational rotational-znt curve. Newton methods for finding invariant surfaces
have also been used by Reiman and Pompfirbyt they did
25 | , — not constrain the rotational-transform of the surface.
A continuous arbitrary trial curve is parametrized with a
poloidal anglea using a Fourier representation

5
L

* ++++++++

M
%‘2 P<“>:m§0 pmCOS Ma), (25)

M
6(a)=a+ 2_1 6, sin(Mma). (26)

+*
e a b s ertrtt
¢....oo++++++++++

The parametes will be identified with the straight-field-line
poloidal coordinate. This curve may be considered as the
+ intersection of an invariant surface, with “action” coordinate
ti + ¢ and specified rotational-transform(y), with the plane
: % ¢»=0. The even representatiqnosine seriesof the radial
0.5 : i . . o .
; : coordinatep and the odd representatidsine seriesof the
poloidal coordinatef (in addition to the secular term) is
consistent with the assumption of a stellarator symmetric
L field and coordinates. This curve, and therefore the surface
12 5 183 3 171 % defined by allowing the curve to flow with the magnetic
L field, is invariant if it is mapped to itself under the field line
FIG. 5. Critical perturbation parametds, for destruction of invariant sur- flow.

faces, with irrational rotational-transform given in Table I, plotted against A di§crete set of pointsg,#;) is constructed equally
the rotational-transform. The vertical scale is $0 Spaced 1N,

1.0 .
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{a|aj=2miIN,i=0N-1}, (27)

and is mapped tof ,6;) by T.

By requiring the trial curve to be invariant under the
rigid rotation map {,«)— (4, a+ 2 +), the discrete set of
points (p; , ;) maps to

M
=2 pmcogm(a;+2m+)], (28)
M
EZ(CH-ZW-L-)-%- 21 Onsinim(a;+27+)]. (29

Constructing the “error” vectorf={p;—p;,6,— 6}, which
has length R, to be a function ok={p,, 6.}, which has
length 2V + 1, a Newton correction for the invariant curve is
found by solving foréx,

0="(x)+df-6x. (30
The derivative matrixdf is provided by the tangent map
ﬁpm(ﬁ_ﬁi) = ﬁpmﬁ_ apﬁi apmpv (31)

FIG. 7. Magnetic coordinateeft), boundary surface and Poincauiet near
Ao (pi—Pi)=—04pidy 6, (32 gnstable(_z, 3) periodic orbit: horizontalangle range=[0.963,1.131, ver-
m m tical (radial range=[0.662,0.665%.

3, (6= 0)=—0,0,0, p, (33

dy (E—Ei)Zé’e E—ﬁepiﬁe 0, (34) low-order periodic orbits. Sequences of noble-irrqtionals of
m m m the type given in Eq(22) will be used to select which sur-
and is inverted using singular value decompositis'D).3*  faces will be used.
By choosing AN to be greater than M +1, the SVD Straight-field-line coordinates can only be constructed
method will minimize|f|, whether the surface indeed exists on invariant surfaces. The coordinates may be interpolated,
or not. The iterations are terminated whp#x| is smaller  but between invariant surfaces there will, in general, be an
than some prescribed tolerance. With Newton methods, it issland chain and associated band of chaos and the interpo-
required to provide an initial guess for the iterations. Thislated coordinates will not be straight-field-line coordinates.
may be provided by knowledge of the rotational-transformFor low-order rationals, the width of the region contained by
profile. Alternatively, the location of the convergents will islands and chaos may be significant. For high-order rational
approximate the irrational curve. surfaces, the chaotic region may become vanishingly small.
A Fourier decomposition of the entire surface in straight-In this case, the interpolated coordinates, to a sufficient ap-
field-line coordinates is immediately possible by allowing proximation, may be deemed to be straight-field-line coordi-
the invariant curve to flow along the field one period. Thisnates.
point will be expanded in the following section. A selection of noble-irrational surfaces converging to
The accuracy to which the invariant surface is con-(2/3) from below asn increases
structed is dependent on the resolution of the Fourier repre- _
sentation. A convenient way to determine if sufficiently +=[0111n,1,1,1.1,. ] (35
many harmonics have been used is to confirm that the Fous used to construct magnetic coordinates and these are
rier representation of the invariant surface lies between thehown in Fig. 7. For this figure, only the region near (23)
convergent periodic orbits. If not, then though the invariantunstable periodic orbit is shown. In the left side of this fig-
surface may indeed exist, insufficient Fourier resolution hasire, the surfaces that are deemed to eitfsit have conver-
been used. Other methods to establish the surface have begents with residue approaching zgrare constructed and
successfully constructed include confirming thidtis close  plotted with solid lines, and for such surfaces the straight-
to zero, that the Fourier modes decay sufficiently rapidlyfield-line angle grid is shown. As increases, the surfaces
compared taM, and that the measured rotational-transformapproach the chaotic region and for somewill be de-
of a field line on the surface agrees with the prescribed valuestroyed. The last surface of this sequence that is deemed to
exist has rotational transfornga=0.656 820 494 002 992 20
=[0,1,1,1,10,1,1,1,. .].

V1. STRAIGHT EIELD LINE COORDINATES The boundary surface is not required to be a member of
this sequence. The algorithm for locating boundary surfaces

The necessary ingredients for a robust construction ofs applied to the interval defined by the rationadg/qq
magnetic coordinates are now prepared. In this section, i#21/32=[0,1,1,1,10 and p,/q,=2/3=[0,1,1,1]. After 10
will be assumed that the chaotic trajectories arise near a fesubdivisions of this interval, the invariant surface that is
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FIG. 8. Magnetic coordinategeft) and Poincareplot: horizontal (angle FIG. 9. Magnetic coordinates and Poincalet: horizontal(angle range
range=[0,27], vertical (radia) range=[0.440,0.715. =[0,27], vertical (radia) range=[0.440,0.715.

closest to thg2/3) chaotic region is determined to have ro-
tational transform +=0.656 965 744 152 842 40

=10.1,1,1,10,131,2,3,1,1,1,.].. This is also shown with a is a field line starting near the unstali®/5) periodic orbit
solid line on the left side of the figure. To distinguish this This orbit traces out the slightly chaotig/5) separatrix and

:gzgg’ the angle coordinate grid is not extended to thl|Sndicates the width of thé€3/5) island. The magnitude of the

. . 73 . . .
On all the invariant surfaces, a field line is followed by perturbation parametdr=0.75<10"". A similar display of

. _ 73 . . - .
5000 toroidal periods and is plotted on both sides of th the coordinates, fok=1.00<10 *, is displayed in Fig. 9.

figure. These orbits coincide with the invariant surfaces. Also or this case, in addition to th@/2) and (2/3) islands, the

o . . . 3/5) island is resolved and the separatrices of @/@&) and
shown are some orbits in the chaotic region to illustrate th 5/8) islands are shown. In principle, as many islands as de-
stochastic region. In this applicatioll =100 Fourier modes - np pie, y

were used to describe the surfaces and the perturbation IOS|red may be resolved; ultimately leading to coordinates dis-

rameterk=0.5x 10" 3. In determining the surfaces, the total Slaymg the fragtal nature dlsplgyed in Fig. 5.
number of T evaluations is approximatelyNs where N The extension of the coordinates from #e=0 plane to

. : _the three-dimensional volume is achieved by defining the
>(.2.M +l.)’ a}nd thus the' method is computationally com straight field line angled, along each of the field lines se-
petitive with field line tracing methods.

The global nature of the magnetic coordinates is dis—leCted in £q.(27) as

field lines that have been started on the invariant surfaces and
near the unstablél/2) and(2/3) periodic orbits. Also shown

played in Fig. 8. For this construction, sequences of noble g — 4+ 4 ¢. (40)
irrationals approachingl/2) and (2/3) asn increases were
used as the coordinate framework Each surface may then be represented as a function of the
+=[02n1,11.1,.. ], (36) (6g,9) coordlna_tes, and mterpolgnon between the surfaces
enables a coordinate transformation
+=[0,1,1n,1,1,1,1, .. 1], (37)
p:p(lp760!¢)! (41)
+=[0,1,2n,1,1,1,1,. . ], (39
0=0(1,6q,9), 42
+=[0,1,1,1n,1,1,1,1,.. ]. (39) (¥:00,¢) 42

Note that this selection will not resolve higher order islandsWhere‘/’ is a convenient flux surface |abggerhaps the tor-

lying between these two low order rationals, the largest oP'dal flux enclosefiand the magnetic field may be written
which is_ th(_e(3/5) island_. Surfaces were deemed t_o be de- B=B“’e¢,+ B%e, +B‘f’e¢,. (43)
stroyed if either the residues of the convergents did not be- 0

come small or the Fourier representation of the surfacegp the invariant surface8*=0 and by usingv-B=0, the

whereM =50 Fourier modes were used, did not lie betweenmagnetic field may be written in the straight-field-line form
successive convergents. On the left of this figure the coordi-

nate grid is shown. On both sides, Poincatets show the B=VyXVOy++(yp)VIXV . (44)
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